Micro-Fluidics Interest Group

In the column on the right you will find useful information about the manufacturing of micro-fluidic devices.

Below you will find recent posts on the 4M Association which are considered to be of interest to the Micro-fluidics Interest Group.

water jet (WJ) and sinking electrical discharge machining

A water jet cutter is a tool capable of slicing into metal or other materials using a jet of water at high velocity and pressure, or a mixture of water and an abrasive substance. The process is essentially the same as water erosion found in nature but greatly accelerated and concentrated. It is often used during fabrication or manufacture of parts for machinery and other devices. It has found applications in a diverse number of industries from mining to aerospace where it is used for operations such as cutting, shaping, carving, and reaming.

Sinker EDM sometimes is also referred to as cavity type EDM or volume EDM. Sinker EDM consists of an electrode and workpiece that are submerged in an insulating liquid such as oil or dielectric fluid. The electrode and workpiece are connected to a suitable power supply. The power supply generates an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs in the fluid forming an ionization channel, and a small spark jumps. The resulting heat and cavitation vaporize the base material, and to some extent, the electrode. These sparks strike one at a time in huge numbers at seemingly random locations between the electrode and the workpiece. As the base metal is eroded, and the spark gap subsequently increased, the electrode is lowered automatically by the machine so that the process can continue uninterrupted. Several hundred thousand sparks occur per second in this process, with the actual duty cycle being carefully controlled by the setup parameters. These controlling cycles are sometimes known as "on time" and "off time". The on time setting determines the length or duration of the spark. Hence, a longer on time produces a deeper cavity for that spark and all subsequent sparks for that cycle creating a rougher finish on the workpiece. The reverse is true for a shorter on time. Off time is the period of time that one spark is replaced by another. A longer off time for example, allows the flushing of dielectric fluid through a nozzle to clean out the eroded debris, thereby avoiding a short circuit. These settings are maintained in micro seconds. The typical part geometry is to cut small or odd shaped angles. Vertical, orbital, vectorial, directional, helical, conical, rotational, spin and indexing machining cycles are also used.

wire electro-discharge machining

In wire electrical discharge machining (WEDM), or wire-cut EDM, a thin single-strand metal wire, usually brass, is fed through the workpiece, typically occurring submerged in a tank of dielectric fluid. This process is used to cut plates as thick as 300mm and to make punches, tools and dies from hard metals that are too difficult to machine with other methods. The wire, which is constantly fed from a spool, is held between upper and lower diamond guides. The guides move in the x–y plane, usually being CNC controlled. The wire-cut process uses water as its dielectric with the water's resistivity and other electrical properties carefully controlled by filters and de-ionizer units. The water also serves the very critical purpose of flushing the cut debris away from the cutting zone. Flushing is an important determining factor in the maximum feed rate available in a given material thickness, and poor flushing situations necessitate the reduction of the feed rate. Wire-cutting EDM is commonly used when low residual stresses are desired. Wire EDM has no added residual stress because it has no cutting forces. There is little change in the mechanical properties of a material in wire-cutting EDM due to these low residual stresses.

micro-thermoforming

Microthermoforming is the abbreviation for microscopic or microscale thermoforming, or, more precisely, for thermoforming of microproducts or microstructure products. Microstructure products means products that have structures in the micrometre range and have their technical function provided by the shape of the microstructure. Thermoforming in turn means shaping of heated and therefore softened semi finished products in the form of thermoplastic polymer films or plates with their edges fixed by three dimensional stretching. Shaping is carried out mainly by forming the films or plates into female moulds (negative forming) or over male moulds (positive forming). While the other polymer microreplication processes such as micro injection moulding or hot embossing are primary forming processes where forming occurs already in a molten, liquid phase of the heated polymer material, microthermoforming is a secondary forming process where forming occurs in a strongly softened, but still solid phase of the heated polymer.

casting

Casting is a manufacturing process by which a liquid material is poured into a mold, which contains a hollow cavity of the desired shape, and then allowed to solidify. The solidified part is also known as a casting, which is ejected or broken out of the mold to complete the process. A typical casting material used in microfluidics is PDMS.

4th congress on Micro and Nano Manufacturing

Micromachines - Supporting the 4M Association

MDPI - Supporting the 4M Association

User login

Micro-Fluidics Interest Group

  • You must login in order to post into this group.